Pzt Material Piezo Ceramics Ring Piezoceramic Transducers for Ultrasonic Lithotripsy

Product Description

Pzt Material Piezo Ceramics Ring Piezoceramic Transducers for Ultrasonic Lithotripsy


1.Some Standard Size of Piezo Ring


Range Of piezo ceramic ring
External diameter: 5.0 - 100mm
Internal di
ameter :(2.0 - 35mm)
Thickness : (0.2 - 15mm) 

Choice of metallisation (Silver, Nickel, Gold and others on request)

Wide choice of PZT formulations

 


2.Typical value of "Hard" PZT materials performance:


 

Hard" PZT materials








Properties



PZT-41

PZT-42

PZT-43

PZT-82

PBaS-4

Dielectric Constant

ɛTr3


1050

1250

1420

1100

1900









Coupling factor 

KP


0.58

0.58

0.58

0.52

0.59


K31


0.32

0.33

0.34

0.3

0.34


K33


0.66

0.67

0.68

0.57

0.68


Kt


0.48

0.48

0.48

0.4

0.49

Piezoelectric coefficient

d31

10-12m/v

-106

-124

-138

-100

-160


d33

10-12m/v

260

280

300

240

380


g31

10-3vm/n

-11.4

-11.2

-11

-10.3

-9.5


g33

10-3vm/n

28

25.3

24

25

22.6

Frequency coefficients

Np


2280

2200

2160

2280

2200


N1


1671

1613

1583

1671

1613


N3


1950

1900

1875

1950

1850


Nt


2250

2200

2200

2300

2200

Elastic compliance coefficient

Se11

10-12m2/n

11.8

12.7

13.2

11.6

13.2

Machanical quality factor

Qm


1000

800

600

1200

2200









Dielectric loss factor

Tg δ

%

0.3

0.4

0.5

0.3

0.5

Density

ρ

g/cm3

7.5

7.5

7.5

7.6

7.5

Curie Temperature

Tc

°C

320

320

320

310

310

Young's modulus

YE11

<109N/m3

85

79

76

86

76

Poison Ratio



0.3

0.3

0.3

0.3

0.33



3. STANDARD MECHANICAL TOLERANCES:

Outside Diameter ±0.150mm
Inside Diameter ±0.150mm
Thickness ±0.05mm
Flatness 0.002**/0.012mm MAX
Parallelism 0.007**/0.012mm MAX
Concentricity 0.2mm



4.Ultrasonic Lithotripsy Application:


The first practical application of ultrasound took place in France in 1916 when Chilowsky and Langevin patented the use of ultrasonic sonar for the underwater localization of submarines. Ultrasonic energy is produced when alternating electrical current is applied to plates on the opposing sides of a crystal. The resultant mechanical vibrations of the crystal propagate waves of energy at a constant frequency, as determined by the voltage applied to the plates and the nature of the crystal. Observations of the disruptive effects of the first sonar on marine life led to the elucidation of the mechanism by which the ultrasonic vibrations affect objects within their path. The high frequency energy waves of ultrasound alternately compress and pull on particles within the radiation field. In transmission media such as water, this results in cavitation. When these cavities rapidly collapse instantaneous pressure is produced with magnitude and force capable of destroying solid objects. Early attempts to fragment urinary and biliary stones by the direct application of ultrasound were unsuccessful due to the high electrical energy requirements and difficulties in conducting and focusing the ultrasonic energy. In the early 1970s the ultrasonic lithotrite was developed. Rather than relying on the direct application of ultrasound energy and the resultant cavitation to disintegrate stones, the ultrasonic lithotrite uses an ultrasound transducer to rapidly vibrate a hollow probe and longitudinally transmit mechanical energy to the surface of stone, causing fragmentation in the same manner a drill. The hollow USL probe facilitates simultaneous suction removal of stone fragments and constant flow irrigation aids in fragment removal and cools the USL probe to reduce the risk of thermal damage to adjacent tissues .


5.Application Image:


Feedback

PZT82 Material Piezoceramic Ring for Ultrasonic Welding Transducer

High Density Piezoceramic Ring for Ultrasonic Welding Equipment

20Khz Piezo Ceramic Ring for Ultrasonic Textile Welding

High Quality Piezo Ceramic Element for Ultrasonic Welding Transducer

Low Cost Piezo Ceramics Rings Transducer for Ultrasonic welding